

Course Structure for B. Tech (Electronics & Communication Engineering) First Year (Common courses for all B. Tech Programme)

First Semester							
S. No.	Code	Subject I		Credits	Category		
1.	BAS-101	Applied Mathematics-I	3-1-0	4	BAS		
2.	BAS-103	Applied Physics-I	2-1-2	4	BAS		
3.	BAS-105	Applied Chemistry	2-1-2	4	BAS		
4.	BMA-110/ BEC-110	Engineering Mechanics/ Basic Electrical Engineering	3-0-2	4	OEC		
5.	BMA-120/ BMA-130	Workshop Practice/ Engineering Graphics	0-1-2	2	OEC		
6.	HMC-110/ BCS-110	Humanities and Social Science/ Programming in C Language3-1-0/ 3-0-2		4	HMC/ OEC		
		Total		22			
		Second Semester					
S. No.	Code	Subject	L-T-P	Credits	Category		
1.	BAS-102	Applied Mathematics-II	3-1-0	4	BAS		
2.	BAS-104	Applied Physics-II	2-1-2	4	BAS		
3.	BAS-106	Environmental Science	2-1-2	4	BAS		
4.	BEC-110/ BMA-110	Engineering Mechanics/ Basic Electrical Engineering	3-0-2	4	OEC		
5.	BMA-130/ BMA-120	Workshop Practice/ Engineering Graphics	0-1-2	2	OEC		
6.	BCS-110/ HMC-110	Programming in C Language / Humanities and Social Science	3-0-2/ 3-1-0	4	HMC/ OEC		
		Total		22			

	Second Year							
	Third Semester							
S. No.	Course Code	Subject	L-T-P	Credits	Category			
1.	BEC-201	Analog Electronics	3-0-2	4	DCC			
2.	BEC-203	Signals & Systems	3-1-0	4	DCC			
3.	BEC-205	Network Analysis and Synthesis	3-0-2	4	DCC			
4.	BEC-207	Digital Electronics	3-0-2	4	DCC			
5.	GEC-201	Generic Open Elective	0-2-0 0-0-4 2-0-0	2	GEC			
6.	BEC-253	Industrial Training/Internship*	-	1	DCC			
7.	BAS-201 BAS-203 BCS-201 BIT-201 BMA-211	Material Science & Engineering Numerical Methods Data Structures Database Management Systems Engineering Measurements and Metrology	3-0-2 3-0-2 3-1-0 3-0-2 3-1-0	4	OEC			
		Total		23				

Fourth Semester					
S. No.	Course Code	Subject	L-T-P	Credits	Category
1.	BEC-202	Linear Integrated Circuits	3-0-2	4	DCC
2.	BEC-204	Digital System Design	3-0-2	4	DCC
3.	BEC-206	Electromagnetic Field Theory	3-0-2	4	DCC
4.	BEC-208	Communication Systems	3-0-2	4	DCC
5.	BCS-202 BIT-204 BMA-210 BAS-202 BAS-204 BAS-206	Computer Organization and Architecture Object Oriented Programming Operations Management Nano Structures & Materials in Engg. Optical Engineering Optimization Techniques	3-0-2 3-0-2 3-1-0 3-1-0 2-1-2 3-1-0	4	OEC
6.	HMC-202	Disaster Management	1-0-2	2	НМС
		Total		22	

Year

Fifth Semester						
S. No.	Course Code	Course CodeSubjectL-T-PCi				
1.	BEC-301	Digital Communication Systems 3-0-2		4	DCC	
2.	BAS-301	Modelling and Simulation 3-0-2 4		BAS		
3.	BEC-303	Control Systems 3-0-2 4		DCC		
4.	DEC-3xx	Departmental Elective Course - 1	partmental Elective Course - 1 3-1-0/ 3-0-2 4		DEC	
5.	HMC-301	Professional Ethics and Human Values	3-0-0	3	НМС	
6.	BEC-353	Industrial Training/Internship*	-	1	DCC	
7.	GEC-301	Generic Open Elective*	0-2-0 0-0-4 2-0-0	2	GEC	
		Total		22		

Sixth Semester						
S. No.	Course Code	Subject	L-T-P	Credits	Category	
1.	BEC-302	Digital Signal Processing	3-0-2	4	DCC	
2.	BEC-304	Information Theory & Coding	nformation Theory & Coding 3-0-2		DCC	
3.	BEC-306	VLSI Design	3-0-2		DCC	
4.	BEC-308	Microprocessors & Microcontrollers 3-0-2		4	DCC	
5.	DEC-3xx	Departmental Elective Course - 2	3-1-0/ 3-0-2	4	DEC	
6.	HMC-302 HMC-304 HMC-306 HMC-308	Principles of Management Marketing Management Financial Management Human Resource Management	2-0-0 2-0-0 2-0-0 2-0-0	2	НМС	
		Total		22		

Fourth	Year
--------	------

Seventh Semester						
S. No.	Course Code	Subject	L-T-P	Credits	Category	
1.	BEC-401	Microwave Techniques	3-0-2	4	DCC	
2.	BEC-403	Wireless and Mobile Communication	3-0-2	4	DCC	
3.	DEC-4xx	Departmental Elective Course-3	3-1-0 3-0-2	4	DEC	
4.	DECó4xx	Departmental Elective Course-4	3-1-0/ 3-0-2	4	DEC	
5.	BEC-451	Minor Project	0-0-8	4	DCC	
6.	BEC-453	Industrial Training/Internship*	-	1	DCC	
		Total		21		

Eighth Semester						
S. No.	Course Code	Subject	L-T-P	Credits	Category	
1.	BEC-402	Embedded Systems	3-0-2	4	DCC	
2.	DEC-4xx	Departmental Elective Course-5	3-0-2	4	DEC	
3.	DEC-4xx	Departmental Elective Course-6	3-1-0 3-0-2	4	DEC	
4.	BEC-452	Major Project	0-0-16	8	DCC	
5.	GEC-402	Generic Open Elective	0-2-0 0-0-4 2-0-0	2	GEC	
		Total		22		

*All Industrial Training/Internship will be done in summer break of previous academic session. The assessment for the same will be done within the first two weeks of opening of academic session by the Department.

List of Departmental Elective Courses

Category	Course Code	Subject	L-T-P
Departmental	BIT-301	Data Communication and Computer Networks	3-0-2
Elective Course-1	BEC-305	Electronics Measurement & Instrumentation	3-0-2
	BCS-301	Artificial Intelligence	3-0-2
	BEC-309	Random Signals & Processes	3-0-2
	BCS-309	Algorithmic Analysis	3-0-2
Departmental	BIT-310	Internet of Things	3-0-2
Elective Course-2	BEC-312	Antenna Design	3-0-2
	BEC-314	FPGA & Verification	3-0-2
	BEC-316	Power Electronics	3-0-2
	BIT-304	Cloud Computing	3-0-2
Departmental	BEC-405	Introduction to Robotics	3-0-2
Elective Course-3	BIT-405	Soft Computing	3-0-2
	BIT-407	Big Data Analytics	3-0-2
	BEC-407	Digital Image Processing	3-0-2
	BEC-409	VLSI Technology	3-0-2
Departmental	BCS-401	Machine Learning	3-1-0
Elective Course-4	BEC-411	Introduction to Smart Grid	3-1-0
	BEC-413	Analog VLSI	3-1-0
	BEC-415	Radar Engineering	3-1-0
	BIT-419	Cyber Security and Forensics	3-0-2
Departmental	BEC- 404	Bio-medical Electronics and Imaging	3-1-0
Elective Course -5	BEC-406	Optical Communication & Networks	3-0-2
	BEC-408	Satellite Communication	3-0-2
	BIT-406	Information Retrieval	3-0-2
	BIT-408	Neural Networks and Deep Learning	3-0-2
Departmental	BEC-410	Non-Conventional Energy Resources	3-1-0
Elective Course-6	BEC-412	Wireless Sensor Networks	3-1-0
	BEC-414	Multimedia Communications	3-0-2
	BCS-412	Computational Optimization Techniques	3-1-0
	BIT-410	Cryptography	3-1-0

ANALOG & DIGITAL ELECTRONICS

Course Code: BEC-2	209	
Contact Hours: L-3	T-0	P-2
Course Category: O	EC	

Credits: 4 Semester: 3

Introduction: The course will introduce fundamental principles of analog and digital electronics. The course provides sufficient basic knowledge for the undergraduate to understand the design of diodes and transistor based circuits, op-amps and their applications as well as the design of digital circuits.

Course Objective:

- Understand the design and analysis of various analog electronic circuits
- Understand the fundamental concepts and techniques used in digital electronics

Pre-requisite:

- Basic concept of circuit theory
- Student should have the prior knowledge of semiconductor electronics
- Basic concept of number system

Course Outcome: After completion of the course, student will be able to:

- Understand basic electronic devices such as diodes, BJT & FET transistors
- Understand various applications of Op-Amp
- Analyse logic processes and implement logical operations using combinational logic circuits
- Design sequential circuits

Pedagogy: Class room teaching, problem solving approach, practical based learning, tutorials

UNIT-I	12 Hours			
Semiconductor diodes, Characteristics and operation, Applications of p-n junction diode.				
Bipolar Junction Transistor: Construction and operation, Common base (CB) configuration,				
Transistor amplifying action, Common emitter (CE) and Common collector (CC) con-	figurations,			
definition of and , saturation, regions of operation of transistor, biasing methods.				
Amplifiers: CE, CC, CE amplifier circuits and their comparisons, RC coupled	amplifier,			
Frequency response, Gain-bandwidth, and Darlington pair, Class B push pull amplifier.				
Feedback: Concept of negative & positive feedback and their relative advantages & disa	advantages,			
Sinusoidal oscillators.	_			
UNIT-II	10 Hours			
Field Effect Transistor: Introduction, JFET characteristics, Depletion & enhancement	MOSFET,			
CMOS. Operational amplifier: Characteristics of ideal Op-Amp, Inverting & no	on-inverting			
amplifier, Differential amplifier, Adder & Subtractor, Integrator, Differentiator, Instr	umentation			
amplifier, Schmitt trigger, Astable multivibrator				
UNIT-III	10 Hours			
Digital electronics: Analog & digital signals, Logic gates, Boolean algebra.	Standard			
representation of logical functions, K-map representation and simplification of logical functions.				
Dongt care conditions, X-OR & X-NOR simplification of K-maps.				
Combinational circuits: Multiplexers, Demultiplexers, Decoders & Encoders, Adders &				
Subtractor, Code converters, Comparators, Decoder/drivers for display devices, A/D and D/A				
converters.				
UNIT-IV	10 Hours			

Flip Flops: S-R, J-K, D & T Flip-flops, Excitation table of a flip-flop, Race around condition
Sequential circuits: Shift registers, Ripple counter, Design of synchronous counters and Sequence
detectors, Sequence generators

Text Books		
1	Morris Mano, õDigital Designö, PHI, 5 th edition, 2013.	
2	Millman and Halkias, õElectronic Devices and Circuitsö TMH, 4 th Edition, 2015.	
3	Salivahanan, Suresh Kumar, Vallavaraj, õElectronic Devices and Circuitsö TMH, 4th	
	Edition, 2016.	
Reference Books		
1	Balbir Kumar and S. B. Jain, õElectronic Devices and Circuitsö PHI, 2 nd Edition 2014.	
2	R.P. Jain, õModern Digital Electronicsö, TMH, 4 th Edtion, 2010	
3	Roy Choudhury and Jain, õLinear Integrated Circuitsö, New Age Publishers, 4th Edition,	
	2017.	

COMMUNICATION SYSTEMS			
Course Code:BEC-208	Credits: 4		
Contact Hours:L-3 T-0 P-2	Semester: 4		
Course Category: DCC			

Introduction: To introduce the concepts of analog communication systems, and to equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.

Course Objective:

- To provide basic understanding of the random signals and stochastic processes.
- To provide understanding of analog modulation techniques alongwith its applications in various fields.
- To understand various types of noise, their source and their effect on the different modulation techniques.
- To understand applications of communication in allied fields of Electronics, Computers and Industrial control.

Pre-requisite: Signals and Systems, Probability theory and stochastic process

Course Outcome: After successful completion of the course student will be able to

- Understand the use of communication in electronic systems, computers, automation and control system.
- Analyse and apply different modulation techniques as per the design requirements.
- Analyse different parameters of analog communication techniques.
- Apply the knowledge of signals and system and evaluate the performance of digital communication system in the presence of noise.

Pedagogy: Classroom teaching, Power-point presentations, Design based Problems.

Contents

UNIT-I	10 Hours	
Introduction to Pobability theory, Conditional probabilities, Random variables, Cumulative distribution function (cdf), probability mass function, probability density functions and properties,		
Expectation- mean, variance and moments of a random variable, Joint moments,	andom variables,	
Covariance and Correlation, Uniform, Gaussian and Rayleigh distributions, Binomi distributions, Multivariate Gaussian distribution.	ial, and Poisson	
Random process, Discrete and continuous time processes, Mean, Autocorrelation and Autocovariance functions, Stationarity, Strict-sense stationary (SSS) and Wide-sense stationary (WSS) processes, Autocorrelation function of a real WSS process and its properties, Cross-correlation function,		
Ergodicity and its importance, Cross-power spectral density and properties, Spectral factorization theorem, Gaussian process, Poisson process, Markov Process.		
UNIT-II	11 Hours	
Introduction to Communication systems, Source of information, Communication channels, Base band pass band signals, Representation of signals and systems, Probabilistic considerations, Modulation process, Primary communication resources, Analog versus digital communication, Applications of communications systems.		
Linear modulation: Time and frequency domain expression of AM (including intensity modulation of light), DSB_SSB_and_VSB_Generation of linearly modulated signals_Coherent_demodulation_and_envelope		

detection.

UNIT-III	11 Hours	
Angle modulation: Instantaneous frequency; phase and frequency modulation. Single tone FM and its spectral		
analysis. NBFM and WBFM. Bandwidth requirements of angle modulated signals. Demodulation of angle		
modulated signal		
Radio and Television broadcasting: AM radio broadcasting and FM radio and TV broad ca	sting. Frequency	
division multiplexing, radio transmitters and receivers.		
UNIT-IV	10 Hours	
Noise in Communication systems: Thermal noise, shot noise and white noise. Noise eq	uivalent bandwidth,	
noise figure and noise temperature. Time domain representation of narrowband noise. Properties of		
narrowband noise. Noise in CW modulation systems.		
Figure of merit: Noise performance of linear and exponential modulation. Pre-emphasis and de-emphasis in		
FM. Comparison of the noise performance of CW modulation schemes		
Text Books		
1. Simon Haykin, õCommunication Systemö, John Wiley & sons., 4 th Edition, 2006		
2. Taub & Schilling, õPrinciples of Communication Systemö, McGraw hill, 4 th Editio	n, 2017	
3. John G. Proakis, õCommunication Systemsö, McGraw Hill, 5 th Edition, 2014.		
Reference Books		
1. B. P. Lathi, õLinear Systems and Signalsö, Oxford Publication, 3 rd Edition, 2017.		
2. Leon W. Couch, õAnalog and Digital Communicationö, Pearson Education, 8 th Ed	tion, 2012.	
3. George Kennedy, õElectronic Communication Systemsö, Tata McGraw Hill, 6 th E	lition, 2017.	

DIGITAL ELECTRONICS		

Introduction: Digital circuits are the basic blocks of modern electronic devices like mobile phones, digital cameras, microprocessors and several other devices. This course emphasizes on the fundamentals of digital circuits and how to engineer the building blocks that go into digital subsystems. This will cover the basics of Boolean algebra and combinational logic followed by a thorough understanding of sequential circuits and state machines. The design and analysis of digital circuits will also be an integral part.

Course Objective:

- To understand number representation and conversion between different number system in digital electronic circuits.
- To analyse logic processes and implement logical operations using combinational logic circuits.
- To understand characteristics of memory and their classification.
- To understand concepts of sequential circuits and to analyse sequential systems in terms of state machines.
- To understand concept of Programmable Devices, PLA, PAL, TTL, ECL, CMOS logic families.

Pre-requisite: Basic understanding of diode and transistor operation.

Course Outcome: After successful completion of the course student will be able to

- Create a digital logic and apply it to solve real life problems.
- Analyse, design and implement combinational logic circuits.
- Understand different semiconductor memories.
- Analyse, design and implement sequential logic circuits.
- Analyse digital system design using PLA.

Pedagogy: Class room teaching, Tutorials.

	11 II	
UNIT-I	11 Hours	
Analog & Digital signals, AND, OR, NOT, NAND, NOR & XOR gates, Boolean al	gebra. Standard	
representation of Logical functions, K-map representation and simplification of lo	gical functions,	
Donøt care conditions, X-OR & X-NOR simplification	of K-maps.	
Combinational circuits: Multiplexers, Demultiplexers, Decoders & Encoders, Adder	s & Subtractor,	
Code Converters, Comparators, Decoder/ drivers for display devices.		
UNIT-II	10 Hours	
Flip Flops: S-R, J-K, D & T Flip-flops, Excitation table of a flip-flop, Race around condition.		
Sequential circuits: Shift registers, Ripple counter, Design of Synchronous counter	s and sequence	
detectors, Sequence generators.		
UNIT-III	11 Hours	
A/D and D/A converters: ADC Performance Characteristics - Resolution, Sampling	Rate, Dynamic	
Range, Binary-weighted DAC, R-2R Ladder type networks, Successive-approximation	on ADC, Linear	
ramp ADC, Dual-slope ADC.		
Logic Families: Characteristics, RTL and DTL circuits, TTL, ECL and CMOS	Logic families.	
Comparison of all Logic Families.		

	UNIT-IV	10 Hours
Lo	ogic Implementations using ROM, PAL & PLA.	
Se	emiconductor Memories: Memory organization & operation, Classification and ch	naracteristics of
m	emories, RAM, ROM and Content Addressable Memory.	
Т	ext Books	
1	R.P. Jain, õModern Digital Electronicsö, TMH, 4 th Edition, 2014.	
2	Morris Mano, õDigital Designö, PHI, 5 th Edition. 2014.	
3	Malvino and Leach, õDigital Principles and Applicationsö, TMH, 7 th Edition, 2010.	
R	eference Books	
1	R. J. Tocci, õDigital Systemsö, 10 th Edition, PHI, 2009.	

R. J. Focci, oblightal Systems, 10 Edition, 111, 2003.
I. J. Nagrath, õElectronics, Analog & Digitalö, 2nd Edition, PHI, 2013.
J. M. Yarbrough, õDigital Logic-Application and Designö, 4th Edition, PWS Publishing, 2012.

DIGITAL SYSTEM DESIGN		
Credits: 4		
Semester:4		

Introduction: The objective of this course is to introduce a hardware description language (HDL) for the specification, simulation, synthesis and implementation of digital logic systems. The students will have design practice sessions and implementing digital logic systems with electronic design and automation (EDA) tools.

Course Objective:

- To implement digital logic circuits on FPGA and a CPLD
- To synthesize complex digital circuits at several level of abstractions
- To simulate and debug digital systems described in VHDL
- To learn the Hardware Description Language
- Demonstrate the use and application of Boolean algebra in the areas of digital circuit reduction, expansion, and factoring.

Pre-requisite: Digital Electronics

Course Outcome: After completion of the course, student will be able to:

- Apply Boolean algebra in reduction, expansion, factoring
- Synthesize and analyze digital circuits through Verilog/VHDL
- Create complex digital circuits at several level of abstractions
- Understand and analyse logic on an FPGA and a CPLD

Pedagogy: Class room teaching, Problem solving approach, Practical based learning

UNIT-I 12 Hours		
Introduction to VHDL, Modelling concepts, Data types and operations, Basic modelling		
constructs, Entity, architecture, Signal, variable, Concurrent statements, Sequential statements,		
Signal drivers, Resolved signals, Delay mechanisms, Dataflow, Behavioural and Structural		
models, Subprograms, Configurations, Package and test bench, High level description of standard		
combinational and sequential modules.		
UNIT-II 10 Hours		
Introduction to Finite State Machine, Pulse and fundamental mode of operation, Realization of		
state table from verbal description, State diagram & Transition matrix, Mealy and Moore machine,		
Reduction of flow tables of completely and incompletely specified sequential machines, Concept		
of secondary state assignment.		
UNIT-III 10 Hours		
Realization of circuits of FSM, Decomposition of FSM & composite machine, Equivalence		
between Mealy and Moore model machine, Capabilities and limitations of FSM, Simplification of		
incompletely specified machines, Analysis of asynchronous FSM, Race and Hazard problems with		
asynchronous sequential machine.		
UNIT-IV 10 Hours		
Introduction to EDA tools, Simulation, Event driven simulation, RTL synthesis, Behavioural		
synthesis, and Synthesis for FPGAs, Testing digital systems, Design for testability. Introduction to		
programmable logic devices: ROM, PLA, PAL, GAL based circuit.		
FPGA, CPLD, Architecture and Programming of FPGA/CPLD and hardware implementation.		
Text Books		
1 Mark Zwolinski, õDigital System Design with VHDLö, 2 nd Edition, 2003.		

2	Z. Kohavi, õSwitching And Finite Automata Theoryö, TMH, 3 rd Edition, 2010.	
3	Peter J. Ashenden, õThe studentøs guide to VHDLö, Morgan Kaufmann publishers, 3 rd	
	Edition, 2008.	
Reference Books		
1	Charles. H. Roth, õDigital System Design using VHDLö, PWS, 2012.	
2	Roth, õFundamental of Logic Designö, Cengage learning, 7th Edition, 2015.	
3	Navabi Z., õVHDL-Analysis & Modelling of Digital Systemsö, McGraw Hill, 2 nd Edition,	
	1998.	

ANALOG ELECTRONICS		
Course Code: BEC-201	Credits: 4	
Contact Hours:L-3 T-0 P-2	Semester: 3	
Course Category: DCC		

Introduction: It is a branch of electronics which deals with analog electronic circuits and electronic components. The course will introduce concepts of electronic devices such as p-n junction diode, BJT and FET which form the basic building block of any electronic system.

Course Objective:

- To give an insight into fundamental concepts of semiconductor devices and design of analog integrated circuits
- To give the broad spectrum of analog principles and design equations

Pre-requisite: Theory of semiconductor physics

Course Outcome: After completion of the course, student will be able to:

- Understand the basic electronics components such as diodes and transistors
- Develop the capability to analyse and design transistor based circuits
- Understand various models for designing and analysing circuits

Pedagogy: Class room teaching, Practical based learning, Problem solving approach

UNIT-I	12 Hours
Review of semiconductor physics, p-n junction diode, p-n diode characteristics and its op	peration, p-
n junction capacitances (depletion and diffusion), Breakdown in p-n diodes.	
Diode applications: Clipping and Clamping circuits, Rectifier circuits, Zener diode, Zener diode as	
regulators, Voltage multipliers, Switching behaviour of p-n diode.	
Bipolar junction transistor: Introduction and types of transistors, Construction, BJT characteristics	
in CB, CE & CC mode, Operating point, ac/dc load line, Leakage current, Saturation	and cut off
mode of operations, Ebers-moll model.	
Bias stabilization: Need for stabilization, Various biasing schemes, Bias stability with	n respect to
variations in Ico, V_{BE} & , Stabilization factors, Thermal stability.	
UNIT-II	10 Hours
Models: Low frequency models for transistor (h-parameter, Hybrid ó , r)	
BJT amplifiers: Analysis at low frequency (CB, CE, CC & CE with R_E), Comparison	of various
types of configurations, Cascaded Amplifiers, Darlington pair, Cascode amplifiers.	
High frequency response of amplifier: Hybrid- Model at high frequency, CE short cire	cuit current
gain, Current gain with resistive load	
UNIT-III	12 Hours
Multistage Amplifiers: Methods of coupling, RC coupled amplifier, Frequency respon	ise analysis
(Low, Mid & High), Calculation of gain bandwidth.	
Feedback Amplifiers: Feedback concept, Classification of Feedback amplifiers, Pr	operties of
negative feedback amplifiers, Overall gain using feedback, Impedance considerations	in different
configurations, Examples of analysis of feedback amplifiers.	
Special semiconductor devices: SCR (Operation, Characteristics & applications),	Thyristors,
TRIAC, DIAC, Unijunction Transistor (UJT), UJT Relaxation Oscillator	
UNIT-IV	8 Hours
Field Effect Transistor: Classification, JFET characteristics, Operating point, Vario	ous biasing
techniques, Enhancement & depletion type MOSFETs, JFET Model, JFET amplifier an	alysis (CD,
CS & CG), CMOS, MISFET, MESFET, VFET	

Text Books		
1	Millman and Halkias, õElectronic Devices and Circuitsö TMH, 4 th Edition, 2015.	
2	Salivahanan, Suresh Kumar, Vallavaraj, õElectronic Devices and Circuitsö TMH, 4th	
	Edition 2016	
3	Boylestad & Nashelsky, õElectronic Devices & Circuit Theoryö PHI ó 5 th Edition, 2014.	
Reference Books		
1	Balbir Kumar and S. B. Jain, õElectronic Devices and Circuitsö PHI, 2012.	
2	Sedra & Smith, õMicro Electronic Circuitsö Oxford University Press, 6 th Edition, 2012.	
3	J. Millman and Halkias, õIntegrated Electronics, Analog & Digital Circuits & Systemsö	
	ТМН ó2017.	

ELEMENTS OF INFORMATION THEORY

Course Code:BEC-2	10	
Contact Hours:L-3	T-1	P-0
Course Category: O	EC	

Credits: 4 Semester: 4

Introduction: Information theory deals with the study and solving the problems of communication or transmission of signals over channels. It is an essential component to decide upon the coding technique to be used for a particular application and measurement of the channel capacity. The concepts of information theory are widely used in research.

Course Objective:

- To introduce the principles and applications of information theory.
- To understand how information is measured in terms of probability and entropy, and the relationships among conditional and joint entropies.
- To calculate the capacity of a communication channel, with and without noise.
- To introduce coding schemes, including error correcting codes.
- To study efficient coding of audio-visual information, data compression.

Pre-requisite: Advanced courses of analog and digital communication.

Course Outcome: At the end of the course students should be able to

- Analyse the information content of a random variable from its probability distribution
- Understand and relate the joint, conditional, and marginal entropies of variables in terms of their coupled probabilities
- Understand channel capacities and properties using Shannonøs Theorems
- Evaluate efficient codes for data on imperfect communication channels

Pedagogy: Classroom teaching is supported by hand-outs, PowerPoint slides, assignments and notes.

UNIT-I	12 Hours	
Information theory: Information rate, Entropy, Joint and conditional entropies, K	Kraft McMillan	
inequality, Mutual information - Discrete memory less channels ó BSC, BEC ó Cha	annel capacity,	
Shannon limit, Source coding theorem, Shannon-Fano coding.		
UNIT-II	10 Hours	
Huffman coding, Extended Huffman coding, Adaptive Huffman Coding, Arithmetic	Coding, LZW	
algorithm Channel, Linear Predictive coding, Introduction to Audio coding, Perce	eptual coding,	
Masking Techniques, Introduction to Speech Coding, Channel Vocoder.		
UNIT-III	10 Hours	
Error control coding, Block codes-Definitions and Principles, Hamming weight, Hamming		
distance, Minimum distance decoding, Single parity codes, Hamming codes, Repetition codes -		
Linear block codes, Cyclic codes - Syndrome calculation.		
UNIT IV 10 Hours		
Convolution codes, Code tree, Trellis, State diagram, Error control coding, Tu	urbo coding -	
Principle of Turbo coding, Video Compression - Principles I,B,P frames, Motic	on Estimation,	
Motion Compensation.		
Text Books		
1 R Bose, õInformation Theory, Coding and Cryptography,ö McGraw hill Education	on, 3 rd Edition,	
2016.		
2 Fred Halsall, õMultimedia Communications: Applications, Networks, F	Protocols and	
Standards,ö Pearson Education Asia, 4 th Edition, 2009.		

3	K. Sayood, õIntroduction to Data Compression,ö Elsevier, 5 th Edition, 2017.		
Re	Reference Books		
1	S Gravano, õIntroduction to Error Control Codes,ö Oxford University Press, 2007.		
2	Amitabha Bhattacharya, õDigital Communication,ö Tata McGraw Hill,1 st Edition, 2017.		
3	Cover and Thomas, õElements of Information Theory,ö Wiley Series in Telecommunication		
	and Signal Processing, 2 nd Edition, 2006.		

ELECTROMAGNETIC FIELD THEORY		
Course Code: BEC-206	Credits: 4	
Contact Hours: L-3 T-1 P-0	Semester: 3	
Course Category: DCC		

Introduction: Electromagnetic field theory is the most fundamental subject in the curriculum of electrical engineering education. Electromagnetic field theory defines capacitors, inductors and resistors in terms of its primary electric and magnetic quantities like electric charge, electric potential, electric current, electric and magnetic flux. Electromagnetics explains universal concepts in three-dimension real world, i.e., electro-magnetic wave propagation in free-space.

Course Objective:

- To list Maxwelløs equations and solve them for specific regular geometries.
- Understand general electromagnetic wave propagation and its applications to engineering problems.

Pre-requisite: No requisite

Course Outcome: At the end of the course, student will be able to

- Understand EM Waves
- Remember the concepts of Electrostatic and Magneto statics field.
- Analyze and formulate fields and electromagnetic waves propagation problems in a multidisciplinary frame individually or as a member of a group.
- Remember the different concepts of electrostatic, magnetostatic and time varying electromagnetic systems.
- Understand and remember the different coordinate systems.

Pedagogy: Class room teaching, smart classes, Tutorials.

UNIT-I	11 Hours	
Introduction: Addition, subtraction and multiplications, Cartesian, Cyli	ndrical, Spherical	
transformation, scalar and vector field, Dot and Cross products, Differential length	n, area and volume,	
Line surface and volume integrals, Divergence and curl, Transformation of vector	ors in different co-	
ordinate systems, Dirac-delta function, Stokesøs theorem.		
UNIT-II	10 Hours	
Electrostatic fields: Electric field due to point-charges, Line charges and surface ch	arges, Electrostatic	
potential, Gaussesø Law - Maxwelløs equation, Solution of Laplace and Poissor	os equation in one	
dimension, Electric flux density, Boundary conditions, Capacitance - calculation of capacitance for		
simple rectangular, Cylindrical and spherical geometries, Electrostatic energy.		
UNIT-III	11 Hours	
Magnetostatics - Magneto-static fields, Biot - Savartøs Law, Ampereøs circuit law,	Magnetic Induction	
and Faradayøs Law, Magnetic Flux Density, Permeability, Energy Stored in	a Magnetic Field,	
Ampereøs Law for a Current Element, Volume Distribution of Current, Max	welløs Equations -	
Maxwelløs equation for static fields, Magnetic scalar and vector potential.		
UNIT-IV	10 Hours	
Electromagnetic Waves - Continuity equations, Displacement current, Maxwelløs	equation, Boundary	
conditions, Plane wave equation and its solution in conducting and non-conducting	g media, Phase and	

Group velocity, Depth of penetration, Conductors and dielectrics, Impedance of conducting medium.
Polarization, Reflection and refraction of plane waves at plane boundaries, Poynting vectors, and
Poynting theorem, Introduction to Transmission Lines and equations, Characteristic impendence, Input
impendence of a lossless line, Open and Short circuited lines, Standing wave and reflection losses,
Impedance matching.

Te	Text Books		
1	Matthew N. O. Sadiku, õElements of Electromagneticsö, Oxford University Press, 7th Edition,		
	2018.		
2	E. C. Jordon, and K. G. Balman, õElectromagnetic Waves & Radiation Systemö PHI, 2 nd Edition,		
	2015.		
3	John R. Reitz, õFoundations of Electromagnetic Theoryö, Pearson, 4 th Edition, 2008.		
Reference Books			
1	William H. Hayt, õEngineering Electromagneticsö, TMH 6 th Edition, 2017.		
2	David K. Cheng, õField and Wave Electromagneticö, 5 th Edition, Pearson Education Asia, 2014.		
3	J.D. Kraus, õElectromagneticsö, TMH, 2017.		

Introduction: This is a course on the design and analysis of Operational Amplifiers (Op-Amps) and Op-Amp based circuits which have varied applications in mathematical operations. This vastly covers the study of linear and non linear applications of Op-Amp. The course also deals in power amplifiers and waveform generators.

Course Objective:

- To study the basic principles, configuration and characteristics of Op-Amp.
- To understand various mathematical applications of Op-Amp.
- To design and understand filters, waveform generators etc which are used in electronic systems

Pre-requisite:

• Basic knowledge of electronic devices, circuit analysis and phasor algebra

Course Outcome: After completion of the course, student will be able to:

- Understand the concept, working principles and applications of Op-Amp
- Analyse linear and non-linear Op-Amp circuits
- Apply Op-Amp to solve a variety of application problems
- Remember the concepts of Op-Amps and its practical applications
- Analyse and design analog electronic circuits using discrete components

Pedagogy: Class room teaching, tutorials, Practical based learning

Contents

UNIT-I	10 Hours	
Introduction to Op-Amp, Op-Amp models (Ideal & Practical), Analysis of intern	nal circuit of	
Op-Amp, Inverting & non-inverting amplifier, Differential amplifier, Transfer ch	aracteristics,	
A _{DM} , A _{CM} , CMRR, Current mirror, Active load, Level Shifter, Output Stages, IC 7	41 Op-Amp.	
Op-Amp Characteristics, DC/AC characteristics, Compensating techniques, Sle	ew rate, Op-	
Amp Data Sheet.		
UNIT-II	12 Hours	
Op-Amp Applications, Adder, Subtractor, Integrator, Differentiator, Voltag	ge-to-Current	
converter, Current-to-Voltage converter, Current amplifier, Instrument amplifier.		
Linear & Non-Linear Applications: Sine wave generation (Barkhausen criterion,	Phase shift,	
Wein bridge, Hartley, Colpitts, LC, RC & Crystal oscillators), Comparator, Schmitt trigger,		
Astable, Monostable, Triangular, Ramp generator, Log/antilog circuits using Op-Amp,		
Precision rectifier.		
UNIT-III 10 Hours		
OTA & its applications, Basic structure and functioning, OTA as Differentiator	r, Integrator,	
(OTA)-C filter, (OTA)-C oscillator, OTA as Voltage amplifier, Programmable res	istor & OTA	
as a filter.		
Power amplifiers, Classification of amplifier, Analysis of class A, B and AB amp	olifiers, Push	
pull amplifier, Complementary symmetry amplifiers, Conversion efficiency,	Cross over	
distortion, Power distortion, Heat sinks, Tuned amplifiers, Power BJT, IC power	er amplifiers,	

MOS power transistors.

	UNIT IV	10 Hours
	0111-11	10 110015
Active RC filters, Idealistic & realistic response of filters (LP, BP, and HP), Butterworth &		
Chebyshev approximation filter functions, All pass, Notch filter, Quadrature filter.		
IC PLL - Operating principle, Monolithic PLL ICs, PLL applications.		
IC 555 Timer - Internal operation and its applications as Astable and Monostable multivibrator		
Text Books		
1	R. A. Gayakward, õOp-Amps and Linear Integrated Circuitö PHI.	
2	D. Roychaudhary, and S. B. Jain, õLinear Integrated Circuitsö New Age Int	ternational ó
	2018.	
3	Albert Malvino, David J. Bates, õElectronic principlesö, 8 th Edition, 2015.	
Re	ference Books	
1	Sedra and Smith, õMicroelectronic Circuitsö, 7th Edition, Oxford University Pr	ress, 2010.
2	J. B. Gupta, õElectronic Devices & Circuitsö S. K. Kataria, 2013.	

NETWORK ANALYSIS AND SYSTEMS		
Course Code :BEC 205	Credits: 4	
Contact Hours: L-3 T-0 P-2	Semester : 3	
Course Category: DCC		

Introduction: This course provides basics of electrical circuit concepts, circuit modelling and methods of circuit analysis in time domain and frequency domain. The individual will be able to solve simple and complex multi-dimensional circuits including direct current (DC) and alternating current (AC) circuits with the help of circuit theory and network theorems. The laboratory exercises will help to design, build, and implement basic AC and DC circuits. The aim of this course is to provide a thorough comprehension of the fundamental behaviour of electrical and electronic circuits, understand concepts of graph theory, two port networks, and network synthesis.

Course Objective:

- To make the students capable of analysing any given electrical network.
- To make the students learn how to synthesize an electrical network from a given impedance/admittance function.
- To analyse the behaviour of the circuit s response in time and frequency domain
- To understand the significance of network functions.
- To understand the concept of graphical solution to electrical network
- To learn techniques of solving circuits involving different active and passive elements
- To learn a number of powerful engineering circuit analysis techniques such as nodal analysis, mesh analysis, theorems, source transformation and several methods of simplifying networks
- To analyse various types of filters, attenuators and different types of two-port network using network parameters, with different types of connections.

Pre-requisite: Basic course in Electrical Engineering.

Course Outcome: After successful completion of the course, student will be able to

- Apply the fundamental concepts in solving and analysing different electrical networks
- Analyse the electrical network in different conditions by selecting relevant technique and apply mathematics in synthesizing the networks in time and frequency domain
- Evaluate the performance of a particular network from its analysis
- Understand the various laws and theorems related to electric networks.
- Understand the concept of two port networks.
- Understand and remember network synthesis.

Pedagogy: Classroom teaching which focusses upon relating the textbook concepts with real world phenomena, along with tutorial classes to enhance the problem solving ability.

Contents

UNIT-I	11 Hours	
Voltage, Current, Power and Energy, Circuit Elements (R,L,C), Independent and	Dependent	
Sources, Kirchhofføs Laws, Series and Parallel combinations of Elements, Voltage d	ivision and	
Current division, Node analysis, Mesh analysis, Three phase networks, Star/Delta	connection,	
Superposition theorem, Thevenings theorem, Nortongs theorem, Source transformations, Maximum		
power transfer tTheorem, Compensation theorem, Reciprocity theorem, Millmanøs theorem,		
Telegenøs theorem.		
UNIT-II	10 Hours	

Time domain response of First order RL and RC circuits, Time domain response of Second order

linear circuits, Circuit Analysis by Laplace Transform, Graph theory and its application.		
	UNIT-III	10 Hours
Two- port three terminal Networks, Equations of two-port networks, Z and Y parameters, Hybrid		
and transmission parameters, Invers	se hybrid and inverse transmission parameters, I	Relationship
between two-port parameters, Inter-connection of two-port networksó Lattice networks.		
	UNIT-IV	11 Hours
Poles and Zeros, Network functions for the one port and two port, Poles and zeros of network		
functions, Restrictions on pole and zero locations for driving point functions and transfer functions,		
Time domain behavior from the pole zero plot, Positive real function and its properties, Properties		
of LC, RC and RL driving point functions - synthesis of LC, RC and RL driving point admittance		
functions using Foster and Cauer first and second forms.		
Text Books		
1 W. Hayt, J.E. Kemmerley and S. M. Durbin, "Engineering circuit Analysisö, Tata McGraw-Hill,		
8 th Edition, 2013.		
2 M.E.VanValkenburg, õNetwork A	Analysisö, Prentice-Hall, 3 rd Edition, 2006.	
3 V. K, Aatre, õNetwork Theory	V. K, Aatre, õNetwork Theory and Filter Designö, New Age International Publishers, 3 rd	
Edition, 2014.		
Reference Books		
1 J. A, Edminister, õTheory and F	roblems of Electric Circuitsö, Schaumøs Outline	Series, Tata
McGraw Hill, 5 th Edition, 2017.		
2 R. C, Dorf & J. A, Svoboda, õIntr	oduction to Electric Circuitsö, John Wiley & Sons,	8 th Edition,
2010.		
3 Sudhakar. A and Shyammohan S.Palli, õCircuits and Networks Analysis and Synthesisö, Tata		hesisö, Tata
McGraw- Hill Publishing Compa	ny Limited, 5 th Edition, 2017.	

SIGNAL AND SYSTEMS

Course Code: BEC-203 Contact Hours: L-3 T-0 P-2 Course Category: DCC

Credits: 4 Semester:4

Introduction: This course introduces the concept of analog and digital signal processing, that forms an integral part of engineering systems in many diverse areas, including seismic data processing, communications, speech processing, image processing, defence electronics, consumer electronics, and consumer products. The course presents and integrates the basic concepts for both continuous-time and discrete-time signals and systems. It addresses classifications of signals and systems, basic signal operations, linear time-invariant (LTI) systems, time-domain analysis of LTI systems, signal representation using Fourier series, continuous-time Fourier transform, discrete-time Fourier transform.

Course Objective:

- To provide strong foundation on signals and systems, which is the foundation of communication and signal processing.
- To make the students learn about basic continuous time and discrete time signals and systems.
- To provide an understanding of application of various transforms for analysis of signals and systems in both continuous time and discrete time domain.
- To create an understanding of the power and energy signals and spectrum.
- To create strong foundation of communication and signal processing to be covered in the subsequent semesters.

Pre-requisite: Inclination to learn mathematics, basic knowledge of differential equations, electrical circuits and networks.

Course Outcome: After successful completion of the course, student will be able to

- Understand about various types of signals, classify them, analyse them, and perform various operations on them.
- Understand about various types of systems, classify them, analyse them and understand their response behaviour.
- Apply transforms in analysis of signals and system.
- Analyse the effects of applying various properties and operations on signals and systems by carrying out simulation.

Pedagogy: Classroom teaching which focuses upon relating the textbook concepts with real world phenomena, along with tutorial classes to enhance the problem solving ability.

UNIT-I	11 Hours	
Introduction: Continuous and Discrete - Time Signals & their Classification,	Continuous &	
Discreteó Time system & their properties. Linear Time Invariant Systems, Properties of LTI		
systems, State variable description for LTI systems, Convolution for continuous time systems,		
Convolution for discrete time systems(DTS), Correlation of DTS.		
UNIT-II	10 Hours	
Fourier analysis for CTS - Importance of frequency domain analysis, Response of LTI systems to		
exponential signals, Periodic signals and properties, Fourier Transform (FT) its Properties, system		
analysis of LTI system using FT Fourier.		
UNIT-III	11 Hours	
Discrete Time Fourier Series (DFS), Discrete Time Fourier transform (DTFT) & its properties,		
Analysis of LTI system using DFS, DTFT, Time and Frequency characterization of signals and		

systems, Magnitude phase representation of the fourier transform, Classification of linear and nonlinear phase, Phase delay and group delay. Min phase system, Max phase system, All pass system.

UNIT-IV	10 Hours	
Sampling theorem, Effect of under sampling, aliasing, Interpolation, Signal r	econstruction using	
zero order hold system, Sample and Hold circuit, Z-Transform- Definitions and Properties,		
Significance and properties of ROC, Inversion of Z-Transform using partial fractions and residue		
theorem, Application of Z-transform for LTI system.		
Text Books		
1. Alan V. Oppenheim, Alan S. Wilsky and Nawab, õSignals and Systemsö	ö, Prentice Hall, 2 nd	
Edition, 2017.		
2. J.G.Proakis and D.G.Manolakis, õDigital Signal Processing Principle	s, Algorithms and	
Applicationsö, Pearson Education, 4 th Edition, 2009.		
3. Simon Haykin and Bary Van Veen, õSignals and Systemsö, Wiley Ind	ia Publications, 2 nd	
Edition, 2007.		
Reference Books		
1. Michal J. Roberts and Govind Sharma, õSignals and Systemsö, T	ata Mc-Graw Hill	
Publications, 2 nd Edition, 2017.		
2. B.P.Lathi, õLinear Systems and Signalsö, Oxford University Press, 3 rd Edit	ion, 2017.	
3. Ramesh Babu, õSignal & Systemsö, Scitech, 4 th Edition, 2011.		